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Models that predict disease incidence or disease recurrence are attractive for clinicians as well as for
patients. The usefulness of a risk prediction model is linked to the two questions whether the observed
outcome is confirmed by the prediction and whether the risk prediction is accurate in predicting the
future outcome, respectively. The first phrasing of the question is linked to considering sensitivity
and specificity and the latter to the positive and negative predictive values. We present the measures
of standardized total gain in positive and negative predictive values dealing with the performance or
accuracy of the prediction model for a binary outcome. Both measures provide a useful tool for assessing
the performance or accuracy of a set of predictor variables for the prediction of a binary outcome. This
concept is a tool for evaluating the optimal prediction model in future research.

Keywords: Binary regression; Negative predictive value; Positive predictive value; Total
gain.

1 Introduction

In the field of cardiology, intensive research is being conducted on new risk factors and biomarkers
with the goal of improving prediction of a future cardiovascular event. Models that predict disease
incidence or disease recurrence are attractive for clinicians as well as for patients. These models allow
for the calculation of an individual risk value based on multiple risk factors. For example, a very
popular risk calculator for the incidence of a cardiovascular event is the Framingham Risk Score
(NCEP, 2001).

Various measures have been discussed for quantifying the predictive ability of a risk prediction
model. A comprehensive overview about measures for summarizing and comparing the predictive
capacity of predictor variables was recently provided by Gu and Pepe (2009). The usefulness of a risk
prediction model is linked to the two questions whether the observed outcome is confirmed by the
prediction and whether the risk prediction is accurate in predicting the future outcome, respectively.
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The first form of the question considers the classification performance of a prediction model. A
standard measure is the area under the receiver-operating characteristics curve (AUC) based on the
conditional probabilities of sensitivity and specificity. Recently, Pencina et al. (2008) proposed the
new complementary statistical measure of integrated discrimination improvement (IDI) for improved
risk classification of two competing risk models. It summarizes a model’s ability—in this case with
an additionally added risk indicator—to correctly upgrade the predicted probability for an outcome
in subjects who experienced a future event. Accordingly, it downgrades the model-based predicted
probability for an outcome in subjects who did not.

The second question considers predictive accuracy more from a prevention point of view (Kraemer,
2008), for example, when one aims at the identification of high-risk persons in order to intervene
properly before they are hit by the risk events. Standard measures for predictive accuracy are the
positive and negative predictive values of a binary outcome and predictor variable. Both measures
are clinically relevant and easily understood (Moskowitz and Pepe, 2004). Leisenring et al. (2000)
discussed how to compare the two predictive values for two binary distributed predictor variables.
Moskowitz and Pepe (2004) extended the approach. They considered and compared two continuously
distributed variables in a marginal linear model.

The current paper explores the predictive accuracy of a prediction model. Section 2 provides a
short description of the data used in this paper. The third section introduces the positive and negative
predictive value curves. The measures of standardized total gain in positive and negative predictive
values of a prediction model for a binary outcome are introduced in Section 4. Both estimators shared
good final sample properties as highlighted by our simulation study in Section 5. The introduced
estimators are applied to real data for investigating whether the incorporation of Nt-pro-BNP improved
risk prediction on top of the standard risk factors in Section 6. Finally, a concluding discussion in
Section 7 completes this paper.

2 Data for illustration

We illustrate the approach using data from the DETECT study (Diabetes Cardiovascular Risk-
Evaluation: Targets and Essential Data for Commitment of Treatment; Wittchen et al., 2005). The
methodology was applied to investigate the incorporation of Nt-pro-BNP for risk management on
top of standard risk factors. We aim to illustrate our proposed methodology in a real data situation.
This example does not claim to serve as a substantial contribution in the discussion about the adding
of the biomarker Nt-pro-BNP to cardiovascular risk stratification. The real data example serves as a
method illustration.

The DETECT study is a large nationally representative epidemiologic cross-sectional and prospec-
tive longitudinal study in German primary care settings (Wittchen et al., 2005). The health state of
55,518 patients was recorded on a target day in September 2003 using an extensive patient and physi-
cian questionnaire. A random subsample of 7519 individuals underwent an intensive standardized
laboratory assessment and was followed up for a time period of five years. Our analyses were based
on these longitudinally followed patients. The study was approved by the ethical commission of TU
Dresden (AZ: EK149092003; date: September 16, 2003), and all patients gave their informed consent.

The main focus of the study was to examine the prevalence and comorbidity status of diabetes
mellitus, hypertension, dyslipidemia, coronary heart disease, and their associated risk conditions. A
total of 6826 individuals were successfully followed up for a time period of five years, constituting
a follow-up response rate of 90.8%. Patients with any history of prior myocardial infarction, known
cardiovascular disease, documented stroke, clinical signs of systolic or diastolic heart failure, and/or
chronic kidney disease requiring hemodialysis (N = 1181) were excluded from analysis at baseline.
Patients with no available laboratory values of Nt-pro-BNP (N = 851) were also excluded, resulting
in a sample of 4794 individuals for our analyses. There were no statistically significant differences
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Table 1 Baseline characteristics of standard risk factors and Nt-pro-BNP in subjects without history
of cardiovascular events, heart failure and chronic kidney disease requiring hemodialysis at baseline
followed up for five years (N = 4794).

Characteristics N (%)a Mean (SD)

Age, years 55.8 (13.7)
Female 2970 (62.0)
Obesityb 1046 (22.6)
Current smoker 950 (21.5)
Exsmoker 1090 (24.6)
Systolic blood pressure, mmHg 131.7 (18.1)
Diastolic blood pressure, mmHg 80.1 (9.7)
Hyperlipidemia 1332 (27.8)
Diabetes mellitus 594 (12.4)
Nt-pro-BNP, pg/mL 121.9 (303.3)

aAll percentages refer to number of subjects with existing data.
bObesity defined by BMI above 30 kg/m2.

in baseline characteristics between patients with and without measurements of Nt-pro-BNP, and the
dropout was independent from the availability of Nt-pro-BNP values.

The details of the standardized methods used in the DETECT study and the baseline character-
istics of the cross-sectional study sample have been described elsewhere (Wittchen et al., 2005). The
standard risk factors age, gender, systolic blood pressure, diastolic blood pressure, smoking status,
hyperlipidemia, diabetes mellitus, and obesity were incorporated into the analyses. The baseline rates
of the standard risk factors in the sample are reported in Table 1. Death and the causes of death were
documented by the physicians or were obtained by the death statistics in 2008 (Leistner et al., 2012).

The mean age was 55.8 (SD = 13.7) with 62% women among the subjects without any history of
cardiovascular disease, stroke, heart failure, and/or chronic kidney disease. A total of 109 (2.3%)

subjects died during the follow-up period. There was a prevalence of 27.8% for hyperlipidemia and
12.4% for diabetes mellitus in the study sample. A total of 22.6% of the subjects met the criteria for
obesity and 21.5% were current smokers.

3 Positive and negative predictive value curves

We consider a data set (Zi,Yi), 1 ≤ i ≤ n of a patients sample of size n with the aim to predict whether
a subject will experience a particular event (Y = 1) or not (Y = 0). The prediction is based on a vector
of D covariates Z = (Zd )d=1,...,D, such as gender, age, blood pressure, or smoking status.

The risk of outcome Y is approximated by a risk prediction model defined as risk(z) :=
P[Y = 1|Z = z]. We assume that larger values of risk(Z) are positively associated with the proba-
bility P[Y = 1], otherwise the assumption could be conformed by an appropriate transformation of
the predictor variable risk(Z). The continuous cumulative distribution function risk(Z) is denoted by
F , F (x) = P[risk(Z) ≤ x]. The assumption of continuity on F can be relaxed (Ferger and Klotsche,
2009; Ferger et al., 2012). In practice risk(z) can be estimated, for example, by a parametric regression
model such as a logistic regression model (Hosmer and Lemeshow, 2000) or a Cox proportional hazard
model (Cox and Oakes, 1984) in case of censored data, respectively.

Using the notion of order statistics, see for example Stirzaker (1994), we denote by risk(Z)1:n
≤ · · · ≤ risk(Z)n:n the rank ordered sample of risk(Z)1, . . . , risk(Z)n and by Y[i:n] the i-th concomitant
satisfying Y[i:n] = Yj if and only if risk(Z)i:n = risk(Z) j .
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3.1 Event rates in low- and high-risk groups

We summarize the established method for dealing with the predictive values by comparing model
performance (Pencina et al., 2008) in the first part of this section. The positive predictive value is
ppv(ν) := P[Y = 1|F (risk(Z)) > ν] for any selected quantile ν ∈ [0, 1] of F (risk(Z)). Accordingly,
the negative predictive value is defined by npv(ν) := P[Y = 0|F (risk(Z)) ≤ ν]. The conditioning of
the probability P[Y = 1] on a partition of the unit interval F (risk(Z)) > ν has a relevant interpretation
in terms of the sample. The sample (F (risk(Z)i,Yi), 1 ≤ i ≤ n is divided into two disjoint subsamples
by the quantile ν. The quantile ν classifies a proportion ν of the sample as negative (low-risk group) and
a proportion of 1 − ν as positive (high-risk group) based on the covariates Z. The probabilities for the
outcome Y in the high- and low-risk groups are given by the predictive values ppv(ν) and (1 − npv(ν))

for a fixed ν ∈ [0, 1], respectively. A good set of predictor variables Z results in a high-event probability
ppv(ν) in the high-risk group. In contrast, a low-event probability (1 − npv(ν)) is preferable in the
low-risk group (Gu and Pepe, 2009).

Reasonable sample estimates for the quantities ppv(ν) and (1 − npv(ν)) are given by

p̂pvn(ν) :=

n∑
i=1

1{Fn(risk(z)i )>ν}Yi

n∑
i=1

1{Fn(risk(z)i )>ν}
(1)

and

1 − n̂pvn(ν) :=

n∑
i=1

1{Fn(risk(z)i )≤ν}Yi

n∑
i=1

1{Fn(risk(z)i )≤ν}
(2)

for a fixed value ν ∈ (0, 1).
The asymptotic behavior of these estimates, following the strong law of large numbers, can be seen

to approach ppv(t) and 1 − npv(t) as n → ∞

ppv(t) =
⎧⎨⎩

(1 − npv(1 − π))(1 − π − t)) + ppv(1 − π)(π )

1 − t
, 0 ≤ t ≤ 1 − π

ppv(1 − π) , 1 − π < t ≤ 1
, (3)

and

1 − npv(t) =
⎧⎨⎩

1 − npv(1 − π) , 0 ≤ t ≤ 1 − π

(1 − npv(1 − π))(1 − π) + (t + π − 1)ppv(1 − π)

t
, 1 − π < t ≤ 1,

(4)

where π := P[Y = 1] is the probability of a positive outcome. The proof is available on request.

3.2 Comparison of event rates in the real data example

Considering the DETECT data example, the risk for the event death by all causes for the two predictor
variable sets (i) standard risk factors (Z1) and (ii) Nt-pro-BNP on top of standard risk factors (Z2)
were estimated by logistic regression models. The quantile thresholds of ν1 = 0.1 and ν2 = 0.2 were
considered, for example, 10% and 20% of the sample where estimated to be in the low-risk group
based on Z1 or Z2. Applying the estimators (1) and (2), the event rates are p̂pv(ν1) = 2.5%, p̂pv(ν2) =
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2.8%, 1 − n̂pv(ν1) = 0.2%, and 1 − n̂pv(ν2) = 0.1% for the predictor Z2. In contrast, the predictor Z1

resulted in p̂pv(ν1) = 2.3%, p̂pv(ν2) = 2.5%, 1 − n̂pv(ν1) = 0.4%, and 1 − n̂pv(ν2) = 0.1%. It appears
that adding Nt-pro-BNP on top of standard risk factors improved prediction based on the predictive
values (Gu and Pepe, 2009).

Pencina et al. (2008) suggested the comparison of predictive values for a set of meaningful thresholds
as highlighted in our example above. However, this approach heavily depends on the selected quantile
ν. Preferable in terms of model performance would be an index that overcomes this limitation being
independent from a threshold.

3.3 The positive and negative predictive value curves

The positive and (1 − negative) predictive value curves were constructed by plotting ppv(ν) and
(1 − npv(ν)) as a function of quantiles ν, ν ∈ [0, 1]. The solid lines display the predictive value curves
in Fig. 1A and B for an artificial data example. Figure 1 assumes that (i) the probability P[Y = 1]
equals 0.4, (ii) P[risk(Z)|Y = 0] follows a N(0, 1)-distribution, and (iii) P[risk(Z)|Y = 1] follows a
N(2, 1) distribution.

The event rates for the high- and low-risk groups can directly be obtained from the predictive value
curves for all possible quantile thresholds.

4 Total gain in positive and negative predictive values

We follow the idea of Bura and Gastwirth (2001) and define total gain in positive and negative predictive
values as a threshold independent index for model performance.

The positive predictive value equals the probability π := P[Y = 1] and the negative predictive
value equals 1 − π = P[Y = 0] for a predictor variable Z providing no information in respect to the
outcome Y . The larger the areas sandwiched between the horizontal dotted lines and the solid lines in
Fig. 1A and B (light gray shadowed area), the more information is given about the model-based positive
and negative predictive values provided by the predictor variable Z. Therefore, the area between the
horizontal line π and the curve ppv(t) is a reasonable estimator for the total gain in positive predictive
value (see Fig. 1A). A similar measure can be defined for the negative predictive value, it is the area
between the horizontal line 1 − π and npv(t) (see Fig. 1B, graphs are mirrored because of presenting
1 − npv(t)). The proposed measure of total gain are defined by T Gppv := ∫

[0,1](ppv(t) − π) dt and
T Gnpv := ∫

[0,1](npv(t) + π − 1) dt, respectively. The summary indices T Gppv and T Gnpv are appealing,
they could directly be visualized from Fig. 1A and B (light gray shadowed area).

Estimators of T Gppv and T Gnpv are given by

̂T Gppv =
n−1∑
k=0

(
1

n(n − k)

n∑
i=k+1

Y[i:n]

)
− 1

n

n∑
i=1

Yi (5)

and

̂T Gnpv =
n∑

k=1

(
1

nk

k∑
i=1

(
1 − Y[i:n]

)) + 1
n

n∑
i=1

Yi − 1. (6)

The derivation of ̂T Gppv and ̂T Gnpv is shown in the Appendix. It is notable that the area sandwiched
by the negative predictive value curve and the horizontal line 1 − π equals the area between the line π

and the (1 − negative predictive value) curve.
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Figure 1 Positive predictive values (A) and (1 − negative) predictive values (B) as a function of
quantiles ν ∈ [0, 1] in hypothetical data (solid line: positive predictive values (A) and (1 − negative)
predictive values (B); dashed line: upper bound of positive predictive values (A) and lower bound
of (1 − negative) predictive values (B) for a given π = P[Y = 1]; dotted line: π = P[Y = 1]; light
gray shadowed area: (A) ̂T Gppv and (B) ̂T Gnpv; gray shadowed area plus light gray shadowed area:
maximum value of total gain.

4.1 Standardized total gain in positive and negative predictive values

Predictive values depend on the probability of the outcome Y (Altman and Bland, 1994). This prop-
erty carries over the areas under the predictive value curves. Therefore, their magnitudes cannot be
generalized and compared beyond a particular study. A standardization of T Gppv and T Gnpv by their
maximum values provides a measure that can be compared across different studies.

The maximum value of total gain is obtained in a model with perfect prediction of Y by the
predictor Z, a complete separation of Y by the values of Z. It is P[Y = 1|F (risk(Z)) ≤ 1 − π ] = 0
and P[Y = 1|F (risk(Z)) > 1 − π ] = 1. The quantile threshold 1 − π refers to the so-called split point
or change point in Ferger and Klotsche (2009). That threshold divides the sample into a high- and a
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Figure 2 Maximum total gain in predictive values as a function of π in the artificial data example
(solid line: maximum total gain in positive predictive value; dashed line: maximum total gain in
negative predictive value).

low-risk group as described in Section 3.1. Both groups have a maximum difference in the event
probability at 1 − π (Ferger and Klotsche, 2009). In case of perfect prediction the quantity (1 −
npv(1 − π)) equals zero and ppv(1 − π) equals one in (3) and (4). The predictive values are given for
a perfect prediction model by

ppvmax(t) :=
⎧⎨⎩

π

1 − t
, 0 ≤ t ≤ 1 − π

1 , 1 − π < t ≤ 1
(7)

and

1 − npvmax(t) :=
⎧⎨⎩

0 , 0 ≤ t ≤ 1 − π

t + π − 1
t

, 1 − π < t ≤ 1
, (8)

following from the limit variables presented in (3) and (4).
The maximum total gain in the positive and (1 − negative) predictive value curves are given by∫

[0,1](ppvmax(t) − π) dt = −ln(π )π and
∫

[0,1](π − (1 − npvmax(t)))dt = ln(1 − π)π − ln(1 − π).
They are highlighted by the area sandwiched between the horizontal line π and the dashed lines
in Fig. 1A and B (light gray shadowed area plus gray shadowed area). The functional dependency of
the maximum total gain in predictive values and the event rate π is displayed in Fig. 2 for our artificial
data example.

With the considerations above we can define the standardized total gain in positive (T Gstd
ppv) and

negative predictive values (T Gstd
npv) as follows:

T Gstd
ppv := T Gppv

−ln(π )π
and T Gstd

npv := T Gnpv

ln(1 − π)π − ln(1 − π)
.
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Finally, estimates of the standardized measures of total gain can be obtained by

̂T Gstd
ppv =

̂T Gppv

−ln(π̂ )π̂
(9)

and

̂T Gstd
npv =

̂T Gnpv

ln(1 − π̂ )π̂ − ln(1 − π̂ )
, (10)

where the probability for a positive outcome can be calculated by π̂ = 1
n

∑n
i=1 Yi.

Both measures provide a tool for assessing the performance or accuracy of a set of predictor variables
Z. The total gains T Gstd

ppv and T Gstd
npv equal zero for a set of predictor variables providing no information

in respect to the outcome Y . On the other side, both measures equal one for a perfect prediction of Y .

4.2 Comparing two risk prediction models using total gain in predictive values

A hypothesis test is of interest in real data application comparing the standardized total gains in
predictive values for two sets of predictor variables. We consider two risk models 1 and 2 estimated
in the same population resulting in paired observations (risk(Z1)i, risk(Z2)i,Yi) for i = 1, . . . , n. The

standardized total gain in predictive values ̂T Gstd,1
ppv , ̂T Gstd,1

npv , and ̂T Gstd,2
ppv , ̂T Gstd,2

npv were calculated for
risk models 1 and 2 as defined in (9) and (10), respectively. To test whether H0 : T Gstd,1

ppv = T Gstd,2
ppv the

test statistic

χppv :=
n
(

̂T Gstd,1
ppv − ̂T Gstd,2

ppv

)2

V̂ppv

(11)

is used. V̂ppv is the variance estimate of the difference in total gains for the two models. The variance
estimate V̂ppv can be calculated by a bootstrap. We sample with replacement n observations from
(risk(Z1)i, risk(Z2)i,Yi). The empirical variance estimate (Efron and Tibshirani, 1993) is computed

based on bootstrap samples
√

n(
̂T Gstd,1

ppv,b − ̂T Gstd,2
ppv,b), b = 1, . . . , B. Similar arguments apply to χnpv :=

n( ̂T Gstd,1
npv − ̂T Gstd,2

npv )2

V̂npv

to test whether H0 : T Gstd,1
npv = T Gstd,2

npv . It can be shown that the estimators ̂T Gstd
ppv

and ̂T Gstd
npv in (9) and (10) are asymptotically normally distributed. Then both test statistics χppv

and χnpv follow a central χ2
1 distribution under H0 (Pfeiffer and Gail, 2011). Confidence intervals

for the differences can be obtained by (
̂T Gstd,1

ppv − ̂T Gstd,2
ppv ) ± 1.96(V̂ppv)

1/2 and (
̂T Gstd,1

npv − ̂T Gstd,2
npv ) ±

1.96(V̂npv)
1/2. Confidence intervals for ̂T Gstd

ppv and ̂T Gstd
npv can be computed as ̂T Gstd

ppv ± 1.96(σ̂ 2
ppv)

1/2

and ̂T Gstd
npv ± 1.96(σ̂ 2

npv)
1/2, where σ̂ 2

ppv and σ̂ 2
npv are the empirical bootstrap variance estimates of (9)

and (10).

5 Simulations

We conducted a simulation study to investigate the numerical performance of the nonparametric
estimators ̂T Gppv and ̂T Gstd

ppv, the coverage of the 95% confidence intervals, size and power function of
the significance test introduced in Section 4.2. The log odds of the outcome variable Y was simulated by
a logistic risk model in which the two covariates Z1 and Z2 were incorporated, logitP[Y = 1|Z1, Z2] =
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Table 2 Results of the simulation study.

̂T Gppv
̂T Gstd

ppv

β0; β1 π ; T Gppv; T Gstd
ppv n Bias RMSE Coverage Bias RMSE Coverage

−6.8; 0.09 0.29; 0.044; 0.134 50 0.013 0.068 0.946 0.028 0.191 0.948
100 0.007 0.047 0.957 0.015 0.133 0.955
500 0.003 0.022 0.935 0.007 0.061 0.937
1000 0.003 0.015 0.939 0.003 0.043 0.942

−8.73; 0.09 0.06; 0.015; 0.088 50 0.012 0.040 0.932 0.016 0.205 0.891
100 0.005 0.027 0.947 0.009 0.157 0.938
500 0.002 0.012 0.946 0.004 0.081 0.953
1000 0.001 0.009 0.956 0.001 0.075 0.952

−7.2; 0.09 0.21; 0.044; 0.133 50 0.013 0.058 0.957 0.014 0.161 0.955
100 0.007 0.044 0.941 0.011 0.146 0.932
500 0.004 0.021 0.942 0.006 0.061 0.944
1000 0.004 0.015 0.958 0.004 0.039 0.963

β0 + β1Z1 + β2Z2. The distribution of the covariate Z1 was simulated as N(65, 10) and Z2 as N(0, 1).
The simulation study is based on N = 1000 independent Monte Carlo replications. Sample sizes of
n ∈ {50, 100, 500, 1000} were considered and the bootstrap variance estimates were based on B = 1000
bootstrap samples.

5.1 Properties of the estimators ̂T Gppv and ̂T Gstd
ppv

The regression coefficient β2 was set to zero in the first part of the simulation study investigating the
properties of the estimators and the coverage of the 95% confidence intervals. The detailed results are
reported in Table 2. The prevalence π ranged between 0.06 and 0.29 in the three considered scenarios.
The root mean square error (RMSE) was comparable across all simulation scenarios for a fixed sample
size. The RMSE decreased by increasing the sample size n. There existed a remarkable bias in the
estimate for a sample size of n = 50. The estimated coverage of the 95% confidence intervals was close
to 0.95 for all parameter settings, even for a small sample size of n = 50. Finally, both estimators ̂T Gppv

and ̂T Gstd
ppv were asymptotically normal distributed (data not shown). Similar results were obtained for

the estimators ̂T Gnpv and ̂T Gstd
npv.

5.2 Size and power of the hypothesis test

We compared the size and power of the hypothesis test, whether adding a predictor variable to
an established risk model increases the standardized total gain in positive and negative predictive
values. We considered risk model 1 including predictor variable Z1, logitP[Y = 1|Z1] = −6.8 + 0.09Z1.
Model 2 included both predictor variables Z1 and Z2, logitP[Y = 1|Z1, Z2] = −6.8 + 0.09Z1 + β2Z2.
The regression coefficient β2 ranges from 0 (noninformative) to 0.24. The values of 0.12 and 0.24 for
β2 correspond to an increase in standardized total gain in positive predictive value of 2.2% and 6.4%,
respectively. If the statistical test performs well, the simulated significance levels should be close to the
selected significance level of α = 0.05 under H0, for example, β2 = 0. It appeared that the simulated
significance levels were approximately 0.061 for n = 100, 0.053 for n = 250, and 0.048 for n = 1000.
Figure 3 displays the power functions for sample sizes n ∈ {100, 250, 1000}. The statistical power
achieved 95% for a 2.2% increase in ̂T Gstd

ppv for n = 1000 and 69% for n = 100.
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Figure 3 Power functions for the hypothesis test (solid line: n = 1000; long-dash dotted line: n = 250;
dashed line: n = 100).

5.3 Discrimination performance

This section is used to present briefly the statistical measures net reclassification improvement (NRI )

and integrated discrimination performance (IDI). Pencina et al. (2008) suggested the two measures
of NRI and IDI for investigating whether adding a predictor variable improves discrimination
performance of an established risk prediction model. The definition of IDI is based on sensitivity and
specificity. It complements our suggested two measures ̂T Gppv and ̂T Gnpv.

We label the established predictor variables with Z1 and the additional predictor variable on top
of established predictors by Z2. The resulting two conditional probabilities risk(Z1) and risk(Z2)

are categorized into clinically meaningful ordinal categories of risk. The resulting classifications are
cross-tabulated. Then the NRI is defined by

NRI := (P[up | D = 1] − P[down | D = 1]) − (P[up | D = 0] − P[down | D = 0]) ,

where up defines upward movement into a higher risk category based on Z2 and down the downward
movement into a lower risk category. An improved prediction model based on Z2 would result in an
upward movement for cases (Y = 1) and a downward movement for controls (Y = 0). The second
measure suggested by Pencina et al. (2008) is the IDI . It is built on the integral of sensitivity and
specificity over all possible threshold values. The IDI can be written by IDI = (ISn − ISo) − (IPn −
IPo), where IS and IP are the integral of sensitivity and specificity over all possible threshold values.
The subscript n refers to the model based on predictor variables Z2 and subscript o to the model based
on predictor variables Z1.

6 Real data application

The real data application introduced in Section 2 is continued in this paragraph. All estimators were
implemented in the statistical software package Stata 11.1 (StataCorp., 2009) and are available on
request. Statistical analyses were also conducted in STATA 11.1.

The median baseline value of Nt-pro-BNP was elevated in patients who died (156.5 pg/ml, interquar-
tile range 76.4, 421.1 pg/ml vs. 56.7 pg/ml, interquartile range 28.7, 113.9 pg/ml). We investigated
the association of the predictor variables Nt-pro-BNP and standard risk factors with the endpoint by
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Table 3 Parameter estimates for the risk model predicting death by all causes in subjects without
history of cardiovascular events, heart failure, and chronic kidney disease requiring hemodialysis at
baseline followed up for five years (N = 4794).

Death by all causes (N = 109)

Estimate 95% CIa p value

Odds ratio for 1-SD increase Nt-pro-BNP
Crudeb) 1.34 1.20–1.51 0.001
Adjusted for standard risk factorsb),c) 1.15 1.04–1.27 0.005
Area under receiver operating characteristic curveb)

Nt-pro-BNP 0.750 0.703–0.797 0.001
Standard risk factorsc),d) 0.816 0.780–0.853 0.001
Standard risk factorsc) plus Nt-pro-BNP 0.822 0.784–0.856 0.000
Estimated differenced),e) 0.011 0.002–0.020 0.012

Standardized total gain in positive predictive valueb)

̂T Gstd
ppv with standard risk factorsd) 0.376 0.304–0.448 0.013

̂T Gstd
ppv with standard risk factorsd) plus Nt-pro-BNP 0.424 0.349–0.497 0.001

Estimated differencee) 0.048 0.003–0.085 0.020
Standardized total gain in negative predictive valueb)

̂T Gstd
npv with standard risk factorsd) 0.758 0.698–0.819 0.008

̂T Gstd
npv with standard risk factorsd) plus Nt-pro-BNP 0.778 0.719–0.838 0.018

Estimated differenced),e) 0.028 −0.006–0.049 0.169
Improved risk classificationb)

Net reclassification improvement (NRI) 16.03 3.16–30.45 0.010
Integrated discrimination improvement (IDI)f) 1.64 0.83–4.80 0.002

a)CI: confidence interval.
b)Odds ratio for a 1-SD increase Nt-pro-BNP: test of odds ratio is equal to 1; area under receiver operating characteristic curve:
test of AUC is equal to 0.5; standardized total gain in positive predictive value: test of statistic is equal to 0; standardized total
gain in negative predictive value: test of statistic is equal to 0; improved risk classification: test of statistic is equal to 0.
c)Odds ratio for increase of 1 standard deviation.
d)Age, gender, genetic disposition, obesity, smoking, systolic blood pressure, diastolic blood pressure hyperlipidemia, diabetes
mellitus.
e)Estimated difference with addition of Nt-pro-BNP to standard risk factors.
f)Difference of averaged increase in sensitivity and in 1 − specificity.

logistic regression analyses (Hosmer and Lemeshow, 2000). The AUC (with 95% confidence intervals)
were estimated after fitting the logistic regression model for classification performance. The crude odds
ratio for a one standard deviation increment of Nt-pro-BNP was 1.34 (95% CI: 1.20, 1.51) for death
by all causes. This association was also statistically significant after adjusting for standard risk factors
(OR = 1.15, 95% CI: 1.04, 1.27). The AUC significantly increased for prediction of death by all causes
when adding Nt-pro-BNP into a model with the standard risk factors (estimated difference = 0.011,
95% CI: 0.002, 0.020).

The results of the comparison of the two risk models are reported in Table 3. Empirical variance
estimates for the standardized total gain in predictive values and the difference between the two
risk prediction models (see (11) for testing whether adding of Nt-pro-BNP on top of standard risk
factors improves significantly the standardized total gain in predictive values) were computed by
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Figure 4 The positive predictive value (A) and negative predictive value (B) as a function of percentile
thresholds t ∈ [0, 1] for the prediction of death by all causes in the DETECT study (solid line: standard
risk factors plus Nt-pro-BNP as predictor variables; dashed line: standard risk factors as predictor
variables; dotted line: upper bound of positive predictive value for predicting death by all causes
(π̂ = 2.3%)).

bootstrapping (Efron and Tibshirani, 1993) as described in Section 4.2. The number of bootstrap
replications was 1000 (Carpenter and Bithell, 2000). The maximum total gain in positive predictive
value for a perfect prediction is 0.086 for the event death by all causes with a prevalence of 2.3%. The
risk model establishing the standard risk factors resulted in 37.6% and the model adding Nt-pro-BNP
on top of standard risk factors resulted in 42.4% of the maximum total gain in positive predictive
value (Fig. 4A). The variance estimate V̂ppv of the difference of total gain in positive predictive values
was V̂ppv = 2.01. The difference is statistically significant (difference = 4.8% , χppv = 5.38, p = 0.020).
The standardized total gain in (1 − negative) predictive value was not significantly improved at the 5%
significance level (75.8% vs. 77.8%, χnpv = 1.80, p = 0.169, Fig. 4B).
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Finally, the IDI and NRI were calculated. The IDI was 1.64 (p < 0.01) for death by all
causes when adding Nt-pro-BNP into the model with standard risk factors. The improve-
ment in averaged sensitivity was 1.60 (p < 0.01) and improvement in averaged specificity 0.04
(p = 0.07).

7 Discussion

We introduced estimators for the total gain in positive and negative predictive values for a binary
outcome provided by a set of predictor variables. Both estimators are based on the area under
the positive and negative predictive value curves. Total gain in the predictive values is linked to
the question whether a set of predictor variables increases the accuracy in prediction of a binary
outcome. The approach of Pencina et al. (2008) does not address this important question. This
concept provides an additional useful tool for evaluating the optimal prediction model in future
research.

The nonparametric estimators for ̂T Gstd
ppv and ̂T Gstd

npv can easily be calculated. The results of
our small simulation study suggest that the estimators well performed for sample sizes greater
than 100. A remarkable bias existed for smaller sample sizes (n < 100). The only assump-
tion on the statistical model is that risk(Z) has a continuous distribution function. More-
over, it is notable that we do not assume the strict monotonicity in the association of pre-
dictor variables Z and the outcome Y such as Moskowitz and Pepe (2004). We only assume
that higher values of Z are associated with a higher probability at all for the outcome of
interest.

The measures ̂T Gstd
ppv and ̂T Gstd

npv provide a tool for assessing the performance or accuracy of a set
of predictor variables Z for the prediction of Y , whereas sensitivity and specificity by themselves
could not assess the performance or accuracy. Sensitivity and specificity are measures of classification
performance.

We applied our estimators to data from the DETECT study to investigate whether the incor-
poration of Nt-pro-BNP on top of the standard risk factors for cardiovascular risk management
improved the prediction of outcome. The basic condition is statistical significance for a positive
response of including Nt-pro-BNP in cardiovascular risk management. However, statistical signif-
icance only stands for the fact that the sample is large enough to obtain a statistically significant
result. Statistical significance does not imply clinical significance or clinical importance of a predictor
variable (Pencina et al., 2008). The total gain in predictive values are statistical measures for improve-
ment in model performance. Unfortunately, these measures lack a clinical interpretation such as the
AUC.

Moskowitz and Pepe (2004) first presented the positive and negative predictive value curves (see
Fig. 1) for a single continuous risk indicator. The statistical modeling framework for comparing the
predictive values of two sets of predictor variables does not provide a simple estimate and comparison
for the positive and negative predictive value curves as already stated by Huang et al. (2007). Moskowitz
and Pepe (2004) compare single predictor variables. The statistical model in Moskowitz and Pepe
(2004) could also be extended to explore a combination of predictor variables as suggested in our
paper.
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Appendix

Estimators for total gain in positive and negative predictive values

In the statistical model, (Xi,Yi), 1 ≤ i ≤ n are independent and identical distributed realizations of
a random vector (X,Y ) ∈ R × {0, 1}. The variable X has an unknown marginal distribution func-
tion F . Estimators for T Gppv := ∫

[0,1](ppv(t) − π) dt and T Gnpv := ∫
[0,1](npv(t) + π − 1)dt in data

(F (X ),Y ) ∈ (0, 1) × {0, 1} are given by

̂T Gppv =
n−1∑
k=0

(
1

n(n − k)

n∑
i=k+1

Y[i:n]

)
− 1

n

n∑
i=1

Yi

and

̂T Gnpv =
n∑

k=1

(
1

nk

k∑
i=1

(
1 − Y[i:n]

)) + 1
n

n∑
i=1

Yi − 1.

Proof. We consider the order statistics of the sample ((X1,Y1), . . . , (Xn,Yn)). The i-th order statis-
tics is denoted by Xi:n and by Y[i:n] the i-th concomitant satisfying Y[i:n] = Yj ⇐⇒ Xi:n = Xj . Recall the
empirical distribution function of (X1, . . . , Xn), Fn(t) := 1

n

∑n
i=1 1{Xi≤t}, t ∈ [0, 1].

A sample estimate of P[Y = 1|F (X ) > t] is given by

p̂pvn(t) :=

n∑
i=1

1{Fn(Xi:n)>t}Y[i:n]

n∑
i=1

1{Fn(Xi:n )>t}
,

for t ∈ { 1
n , . . . , n−1

n , 1
}
.

We set p̂pvn := 0 for t ∈ [0, 1
n ), Fn(X0:n) := 0 and Fn(Xn+1:n) := 1. It follows that
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∑n
i=1 1{Fn(Xi:n)>t} = n − ∑n

i=1 1{Fn(Xi:n )≤t} = n − ∑n
i=1 1{ i

n ≤t} = n − k for t ∈ [ k
n , k+1

n

)
. Then

̂PPV n(t) :=
∫

[ 1
n ,...,1)

p̂pvn(t)dt

=
∫

[ 1
n ,...,1)

n∑
i=1

1{Fn(Xi:n )>t}Y[i:n]

n∑
i=1

1{Fn(Xi:n)>t}
dt

=
n−1∑
k=0

∫
[ k

n , k+1
n )

n∑
i=1

1{Fn(Xi:n )>t}Y[i:n]

n∑
i=1

1{Fn(Xi:n)>t}
dt

=
n−1∑
k=0

∫
[ k

n , k+1
n )

1
n − k

n∑
i=k+1

Y[i:n]dt

=
n−1∑
k=0

(
1

n(n − k)

n∑
i=k+1

Y[i:n]

)
.

The quantity π = P[Y = 1] can be estimated by π̂ = 1
n

∑n
i=1 Yi. It yields the estimator ̂T Gppv for

T Gppv. The total gain in negative predictive value could be calculated by similar arguments.
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